19.12.2023

Научный «дедушка» Капицы. Биография джозефа джона томсона Томсон краткая биография


В 1897 году британским физиком Джозефом Джоном Томсоном (1856-1940) было совершено открытие электрона после серии экспериментов, целью которых было изучения природы электрического разряда в вакууме. Знаменитый ученый интерпретировал отклонения лучей электрически заряженных пластин и магнитов в качестве доказательства того, что электроны гораздо меньше, чем атомы.

Великий физик и ученый должен был стать инженером

Томсон Джозеф Джон, великий и наставник, должен был стать инженером, так считал его отец, однако в то время у семьи не было средств на оплату обучения. Вместо этого молодой Томсон посещал колледж в Мачестере, а затем и в Кембридже. В 1884 году он был назначен на престижную должность профессора экспериментальной физики в Кембридже, хотя сам он лично проводил очень мало экспериментальных работ. Он открыл в себе талант к разработке аппаратуры и диагностировании связанных с этим проблем. Томсон Джозеф Джон был хорошим преподавателем, вдохновлял своих учеников и уделял значительное внимание широкой проблеме развития науки преподавания в университете и средней школе.

Лауреат Нобелевской премии

Томсон получил множество различных наград, включая Нобелевскую премию по физике в 1906 году. Он также имел большое удовольствие видеть, как некоторые из его приближенных получают свои Нобелевские премии, в том числе Резерфорд по химии в 1908 году. Ряд ученых, таких как Уильям Праут и Норман Локьер, предположили, что атомы - это не самые мельчайшие частицы во Вселенной и что они построены из более фундаментальных единиц.

Открытие электрона (кратко)

В 1897 году Томпсон предположил, что одна из основных единиц в 1000 раз меньше атома, эта стала известна как электрон. Учёный обнаружил это, благодаря своим исследованиям о свойствах катодных лучей. Он оценил массу катодных лучей путем измерения тепла, выделяемого при попадании лучей теплового перехода, и сравнил ее с магнитным отклонением луча. Его эксперименты говорят не только о том, что катодные лучи в 1000 раз легче атома водорода, но и то, что их масса была одинаковой вне зависимости от типа атома. Ученый пришел к выводу, что лучи состоят из очень легких, отрицательно заряженных частиц, которые являются универсальным строительным материалом для атомов. Он назвал эти частицы "корпускулы", но позже ученые предпочли название "электроны", предложенное Джорджем Джонстоном Стони в 1891 году.

Опыты Томпсона

Сравнивая отклонение пучков катодных лучей с электрическим и магнитным полями, физик получил более надежные измерения заряда и массы электрона. Опыт Томсона проводился внутри специальных электронно-лучевых трубок. В 1904 году он выдвинул гипотезу о том, что модель атома представляет собой сферу позитивной материи, в которой положение частиц определяется электростатическими силами. Чтобы объяснить в целом нейтральным заряд атома, Томпсон предположил, что корпускулы были распределены в однородном поле положительного заряда. Открытие электрона дало возможность считать, что атом можно разделить на еще более мелкие части, и стало первым шагом к созданию детальной модели атома.

История открытия

Джозеф Джон Томсон широко известен как первооткрыватель электрона. Большую часть своей карьеры профессор работал над различными аспектами проводимости электричества через газы. В 1897 (год открытия электрона) он экспериментально доказал, что так называемые катодные лучи на самом деле являются отрицательно заряженными частицами в движении.

Много интересных вопросов связано непосредственно с процессом открытия. Очевидно, что характеристиками катодных лучей занимались еще до Томсона, и несколько ученых уже внесли свой важный вклад. Можно ли тогда с точностью сказать, что именно Томсон был первым, кто обнаружил электрон? Ведь он не изобрел вакуумную трубку или наличие катодных лучей. Открытие электрона - это чисто кумулятивный процесс. Кредитуемый первооткрыватель вносит важнейший вклад, обобщая и систематизируя весь накопленный до него опыт.

Электронно-лучевые трубки Томсона

Великое открытие электрона было сделано при помощи специального оборудования и при определенных условиях. Томсоном была проведена серия экспериментов с использованием продуманной электронно-лучевой трубки, которая включает в себя две пластины, между ними должны были путешествовать лучи. Были приостановлены давние споры относительно природы катодных лучей, возникающих при прохождении электрического тока через сосуд, из которого была откачана большая часть воздуха.

Этим сосудом была электронно-лучевая трубка. Применяя усовершенствованный вакуумный метод, Томсон смог выдвинуть убедительный аргумент о том, что эти лучи состоят из частиц, независимо от вида газа и типа металла, который использовался в качестве проводника. Томсона по праву можно назвать человеком, который расщепил атом.

Научный затворник? Это не про Томсона

Выдающийся физик своего времени отнюдь не был научным затворником, как часто думают про гениальных ученых. Он был административным руководителем очень успешной Кавендишской лаборатории. Именно там учёный познакомился с Роз Элизабет Пэджет, на которой и женился в 1890 году.

Томсон не только управлял рядом исследовательских проектов, он также финансировал реконструкцию лабораторных помещений с небольшой поддержкой от университета и колледжей. Это был талантливый педагог. Люди, которых он собирал вокруг себя с 1895 по 1914 годы, приезжали во всех сторон света. Некоторые из них под его началом получили семь Нобелевских премий.

Именно при работе с Томсоном в Кавендишской лаборатории в 1910 году провел исследования, которые привели к современному пониманию внутренней

Томсон очень серьезно относился к своей преподавательской деятельности: он регулярно читал лекции в начальных классах утром и преподавал науку аспирантам днем. Учёный считал учение полезным для исследователя, поскольку оно требует периодически пересматривать базовые идеи и одновременно оставлять место для возможности открытия чего-то нового, на что раньше никто не обращал внимания. История открытия электрона это наглядно подтверждает. Большую часть своей научной деятельности Томпсон посвятил изучению прохождения электрически заряженных частиц тока сквозь и вакуумное пространство. Он занимался исследованием катодных и рентгеновских лучей и внес огромный вклад в изучение физики атома. Кроме этого, Томсоном была также разработана теория движения электронов в магнитном и электрическом полях.

ТОМСОН ДЖОЗЕФ ДЖОН

(1856 г. – 1940 г.)


Знаменитый английский физик Джозеф Джон Томсон родился 18 декабря 1856 года в Читэм-Хилл, пригороде Манчестера (Англия) в семье Джозефа Джеймса Томсона и Эммы Томсон, урожденной Свинделлс. Его отец был известным книготорговцем и издателем.

Летние каникулы Джозеф Джон вместе со своим братом Фредериком Верноном, который был младше его на два года, проводили вместе с матерью.

В 1870 году, когда Джозефу Джону исполнилось 14 лет, отец отправил мальчика учиться в Оуэнс-колледж (позже – Манчестерский университет), где тот должен был получить специальность инженера. Спустя два года отец умер, но благодаря стипендии и финансовой поддержке матери молодой Томсон продолжил обучение в Оуэнс-колледже.

Преподаватели колледжа, Осборн Рейнольдс и Бальфур Стюарт, привили способному ученику интерес к физике. В отличие от многих других колледжей Великобритании, в Оуэнс-колледже читали курс экспериментальной физики, который очень нравился Томсону.

В возрасте 16 лет Джозеф Джон получил приз по математике, а в следующем году был награжден призом по технике.

Окончив в 1876 году Оуэнс-колледж и получив звание инженера, Томсон поступил по рекомендации своих преподавателей в Тринити-колледж Кембриджского университета, один из наиболее престижных колледжей страны. Здесь он изучал математику и ее приложения в области теоретической физики. Через некоторое время Томсон стал стипендиатом Кембриджского университета, а позже ему была назначена именная стипендия.

В 1880 году по результатам кембриджского экзамена по математике Томсон стал вторым ранглером (первым был знаменитый Джозеф Лармор). За блестящие результаты в учебе Джозеф Джон был удостоен премии Смита. В том же году молодой ученый получил степень бакалавра по математике и вошел в ученый совет Тринити-колледжа. С этого времени и до конца жизни Томсон был душой и движущей силой колледжа. В течение двух лет он работал в нем по 18 часов в неделю. В 1883 году Джозеф Джон стал лектором, а позже (в 1918 году) и мастером (главой) колледжа.

В 1871 году в Кембриджском университете была открыта первая физическая исследовательская лаборатория. До этого времени университеты не имели своих исследовательских лабораторий, и ученые в большинстве случаев работали и совершали открытия у себя дома. Первым директором лаборатории стал великий Джеймс Клерк Максвелл, бывший инициатором ее открытия. После его ранней смерти директором был избран другой великий физик – лорд Рэлей.

В лаборатории было сделано немало великих открытий, позже она получила название Кавендишская лаборатория (по имени Генри Кавендиша) и стала мировым центром экспериментальной физики.

В 1884 году знаменитый Джон Уильям Стретт, лорд Рэлей (тоже будущий нобелевский лауреат), ушел в отставку, решив продолжить научные исследования в собственной лаборатории.

Избрание на освободившийся пост профессора экспериментальной физики и директора Кавендишской лаборатории Джозефа Джона Томсона стало неожиданностью для многих профессоров и научных деятелей. В то время ему было всего двадцать семь лет, по специальности он был математиком, в экспериментальной физике не совершил никаких заметных открытий. Молодой ученый всего лишь разрабатывал математические модели, которые, по его мнению, должны были выявить структуру атома, и продолжал исследования Максвелла в области электромагнетизма. Через некоторое время стало ясно, что выбор на эту должность Томсона оказался очень удачным, и Джозеф Джон стал одним из великих директоров Кавендишской лаборатории.

Наиболее популярными в то время исследованиями физиков были проблемы электричества и магнетизма. В своих первых лабораторных работах Джозеф Джон решил исследовать электрическую проводимость газов и физическую природу источников, порождающих напряженности полей. Он приступил к исследованию токов в разреженных газах.

Еще в 1853 году талантливый французский физик А. Массон провел эксперимент, пропуская электрические разряды через стеклянную трубку, из которой был выкачан воздух. Впоследствии английский физик Уильям Крукс с помощью такого же устройства провел множество различных опытов. В одном из них Крукс поместил в противоположные концы трубки электроды, а между ними – вертушку с лопастями. Под действием лучей, которые распространялись отрицательно заряженным электродом – катодом, – вертушка вращалась, что давало возможность предположить, что катодные лучи являются на самом деле потоком микроскопических частиц с маленькой массой.

Крукс сделал и другие любопытные наблюдения. Если на внутреннюю поверхность трубки наносили вещества, а газ был достаточно разреженным, то под действием катодных лучей стеклянные стенки трубки возле анода флуоресцировали зеленым светом.

Мнения ученых о природе катодных лучей разошлись. Английские физики считали, что катодные лучи являют собой поток заряженных частиц, но многие континентальные физики, в частности, немецкие, исходя из опытов Генриха Герца, предполагали, что эти лучи являются волнами (колебаниями) в неизвестной невесомой среде.

Интерес к исследованиям катодных лучей подогрело открытие Вильгельмом Рентгеном в 1895 году рентгеновских лучей. Томсон стал одним из самых активных исследователей в этой области физики.

Работая вместе со своим гениальным ассистентом Эрнестом Резерфордом, он обнаружил, что под воздействием рентгеновских лучей увеличивалась электропроводность газов. Ученые опубликовали знаменитую работу, в которой сделали вывод, что возникающая проводимость очень напоминает ионную проводимость в растворе при электролизе.

В 1897 году Томсон сконструировал трубку, похожую на трубку Крукса. С ее помощью он измерял отклонения катодных лучей в электрическом поле. В ней ученый использовал две пластинки, между которыми проходили катодные лучи. Напряжение, подаваемое на пластинки, можно было увеличивать или уменьшать, и чем выше было при этом напряжение, тем сильнее должно было быть отклонение катодных лучей от прямолинейной траектории.

В результате опыта Томсон выявил отклонение катодных лучей под действием электрического поля. Впоследствии знаменитый ученый сделал вывод о том, что направление отклонения указывает на то, что составляющие частицы катодных лучей несут отрицательный электрический заряд.

Предположение Томсона подтвердил замечательный французский физик-экспериментатор Жан Перрен. Он определил знак электрического заряда составляющих частиц катодных лучей, направляя их на металлический цилиндр. В результате опыта цилиндр оказался заряженным отрицательно.

Также Томсон измерил скорость катодных лучей, которая оказалась меньше скорости света в 2000 раз, что давало еще одно доказательство в пользу корпускулярной природы лучей. Впоследствии с помощью подобного эксперимента знаменитому ученому удалось установить массу и заряд частиц, составлявших катодные лучи.

Джозеф Джон провел теоретические расчеты, которые должны были описать движение заряженной частицы под воздействием электрического и магнитного полей. По мнению Томсона, отклонение частицы от прямолинейной траектории зависело от отношения ее заряда к массе.

Вслед за этим ученый поставил эксперимент, в котором отклонял катодные лучи посредством электрического поля. Затем с помощью магнитного поля эти лучи отклоняли в противоположную сторону, так чтобы они вернулись в первоначальную позицию. Таким образом можно было определить скорость и отношение заряда частицы к ее массе.

Эксперименты блестяще подтвердили теоретические умозаключения Томсона. В результате опыта было установлено, что отношение заряда частицы к ее массе почти в 1000 раз меньше, чем у ионов водорода (на сегодняшний день известно, что истинное отношение приблизительно 1837:1). Томсон предположил, что заряд частиц равен по модулю заряду иона водорода, который к тому времени был точно вычислен с помощью экспериментов в области электролиза. Поскольку атом водорода имел нулевой заряд, то возникало предположение, что заряд открытых частиц равен по значению и противоположен по знаку заряду иона водорода.

Вскоре описанные Томсоном отрицательно заряженные частицы были названы «электронами». Открытие Джозефа Джона Томсона стало одним из важнейших открытий в физике XIX века.

Позже с помощью прибора, изобретенного Ч. Вильсоном, удалось получить значение заряда электрона. Оказалось, что оно действительно соответствует значению заряда иона водорода. Предположение Томсона подтвердилось.

В 1906 году Джозеф Джон Томсон был удостоен Нобелевской премии по физике «в знак признания его выдающихся заслуг в области теоретических и экспериментальных исследований проводимости электричества в газах».

В своей презентационной речи, произнесенной 10 декабря 1906 года, профессор Дж. П. Класон, президент Шведской королевской академии наук, поблагодарил ученого за его работы, которые позволили современным физикам предпринять исследования в новых направлениях. Также Класон заявил, что Томсон по праву занимает место в одном ряду с такими гениями науки, как Фарадей и Максвелл.

В своей нобелевской лекции «Носители отрицательного заряда», прочитанной 11 декабря 1906 года, ученый детально проанализировал свое открытие электронов.

После получения Нобелевской премии Томсон продолжил свои научные исследования. Кроме открытия электрона он совершил и много других важных для науки открытий.

В своих ранних работах английский ученый исследовал электромагнитное поле движущегося заряженного шара, теорию вихрей, провел прецизионное измерение отношения абсолютных электрических единиц к электромагнитным единицам.

В своих работах «Электричество и материя», «Материя и эфир», «Структура света», «Фарадеевы силовые трубки и уравнения Максвелла» Томсон последовательно развивал вихревую теорию материи и взаимодействий.

Известная работа ученого «Трактат о движении вихревых колец» была удостоена приза Адамса в 1884 году. Исходя из вихревой теории эфира, Томсон вывел формулу Е = mc 2 задолго до Эйнштейна.

В 1886 году была опубликована его знаменитая работа «Применение динамики в физике и химии», а в 1892 году ученый отдал в печать свою новую работу «Заметки о недавних исследованиях электричества и магнетизма». Эту работу часто называют «третьим томом Максвелла». Совместно с профессором Пойнтингом Томсон написал четырехтомный учебник по физике, а в 1895 году издал работу «Элементы математической теории электричества и магнетизма», которая выдержала несколько переизданий и переводов на различные языки мира.

После открытия в 1897 году электрона Томсон предложил свою модель атома. Выдающийся ученый предположил, что атом состоит из положительно заряженной размытой сферы, в которую вкраплены маленькие отрицательно заряженные частицы – электроны. Под действием кулоновских сил электроны располагаются вблизи центра атома, а если в результате какого-либо действия частицы отклоняются от положения равновесия, то кулоновские силы восстанавливают их исходное состояние. Модель Томсона получила в среде ученых шутливое прозвище «сливовый пудинг», или «пудинговая модель».

Однако в 1910 году гениальный физик Эрнест Резерфорд, бывший ассистент Томсона, вместе со своими учениками Гейгером и Марсденом провели ряд экспериментов, в результате которых показали ошибочность модели Томсона. Резерфорд предложил новую, так называемую «планетарную» модель атома. По Резерфорду, в центре атома, подобно Солнцу, размещается положительно заряженное ядро, а вокруг ядра по круговым орбитам вращаются отрицательно заряженные электроны. На электроны действует центробежная сила, которую уравновешивает электростатическое притяжение электрона к ядру. Предложенная Резерфордом модель заставила Томсона признать ошибочность своей модели атома. Позже другой гениальный физик Нильс Бор усовершенствовал модель Резерфорда, предположив, что электроны размещаются вокруг ядра на строго определенных орбитах.

После серии успешных работ, приведших к открытию электронов и их свойств, в 1899 году Томсон обнаружил электроны в фототоке, а также наблюдал эффект термоэлектронной эмиссии. Кроме того, ученый объяснил непрерывный спектр рентгеновского излучения.

Благодаря своим последующим работам Джозеф Джон Томсон стал одним из основоположников электронной теории металлов. В 1900 году он вывел формулу для эффективного сечения рассеяния электромагнитных волн свободными электронами (формула Томсона). Через год после предложения модели атома, в 1904 году, Томсон предположил, что электроны в атоме составляют группы различных конфигураций. Это явление и обусловливает периодичность химических элементов.

С 1905 года Томсон интересовался «канальными лучами» – быстро движущимися частицами, образующимися за катодом газоразрядной трубки. Ученый открыл многие их характеристики, а также выделил типы атомов и атомных групп в этих лучах.

На идеях Томсона базируется современная масс-спектрометрия.

В 1911 году английский ученый разработал метод парабол для измерения отношения массы частицы к ее заряду. И уже в следующем году, используя этот метод, он обнаружил первые изотопы. Ученый получил атомы неона с массами 20 и 22. Открытие Томсона сыграло важную роль в понимании природы радиоактивных элементов (таких как уран, радий).

В 1896 году Томсон посетил США и прочитал в Принстоне курс из четырех лекций, в которых подвел итог своих исследований. (Именно по возвращению из Америки он совершил знаменитое открытие электронов, о котором поведал всему миру на своей вечерней лекции в Королевском институте 30 апреля 1897 года.)

В 1904 году Томсон вновь поехал в Америку, где прочел шесть лекций по электричеству и материи в Йельском университете.

За свою долгую научную жизнь ученый написал множество учебников, монографий и работ, которые стали классическими еще при его жизни.

Во время Первой мировой войны нобелевский лауреат работал в Управлении исследований и изобретений и являлся советником правительства.

В 1918 году Томсон ушел в отставку, оставив пост профессора кафедры экспериментальной физики Кембриджского университета и по совместительству – директора Кавендишской лаборатории, в которой совершил почти все свои гениальные открытия. В этом же году он ушел в отставку из Королевского института в Лондоне, в котором трудился с 1905 года.

В университете и лаборатории ученый проработал около 35 лет. За это время он совершил множество важных открытий, а Кавендишская лаборатория стала одним из огромнейших научно-исследовательских центров, в котором мечтали работать лучшие физики мира.

В следующем году Томсона сменил на этих постах его ассистент Эрнест Резерфорд, а сам нобелевский лауреат стал главой Тринити-колледжа Кембриджского университета.

С 1884 года ученый был членом Лондонского королевского общества, ас 1916 по 1920 год – его президентом. В 1909 году ученый стал президентом Британской ассоциации ученых.

В 1890 году, в возрасте 34 лет знаменитый ученый женился на Розе Элизабет Паджет, дочери сэра Джорджа Паджета, профессора физики Кембриджского университета. Супруги имели двух детей – дочь Джоанну и сына Джорджа.

Сын ученого, Джордж Паджет Томсон, впоследствии стал известным физиком, профессором Лондонского университета. В 1937 году он также стал лауреатом Нобелевской премии по физике, которую он получил за экспериментальное открытие дифракции электронов на кристаллах.

Джозеф Джон Томпсон был убежденным сторонником классической физики и придерживался теории эфира. Квантовую теорию, как и теорию относительности, он воспринял холодно и изменил свое мнение лишь после того, как его сын опытным путем обнаружил волновые свойства у электронов.

Кроме того что Томсон был величайшим физиком-классиком, совершившим революционные научные открытия, он стал основателем международной научной школы физиков. Будучи прекрасным руководителем и квалифицированным преподавателем, Томсон воспитал и раскрыл таланты многих начинающих физиков. Под его началом работали такие гении науки, как Э. Резерфорд, Ч. Вильсон, Ф. У. Астон, У. Ричардсон, П. Ланжевен. Из тех ассистентов, что работали под его руководством в Кавендишской лаборатории, семеро получили Нобелевские премии.

Знаменитый ученый Макс Борн (в будущем также нобелевский лауреат) писал, что на своем примере почувствовал обаяние личности Джозефа Джона Томсона.

Кроме Нобелевской премии Томсон был награжден различными призами и наградами, среди которых можно выделить награды Лондонского королевского общества – Королевскую медаль (1894), медаль Хьюза (1902) и медаль Копли (1914), а также медаль Ходжкинса Смитсоновского университета в Вашингтоне (1902), медаль Б. Франклина (1923), медаль Мескарта (1927), медаль Дальтона (1931), медаль М. Фарадея (1938).

Томсон был членом различных академий и научных обществ. Его удостоили почетного докторского звания университеты Оксфорда, Кембриджа, Дублина, Лондона, Геттингена, Осло, Парижа, Эдинбурга, Принстона, Афин, Кракова и др.

С 1913 года Томсон состоял иностранным почетным членом-корреспондентом Санкт-Петербургской академии наук, а с 1925 года – иностранным почетным членом АН СССР.

В 1908 году знаменитый ученый был возведен в ранг рыцаря, а в 1912 году сэр Джозеф Джон Томсон был награжден орденом «За заслуги».


Оуэнс-колледж сыграл важную роль в карьере Т., поскольку там был превосходно оборудованный факультет и в отличие от большинства колледжей того времени читались курсы экспериментальной физики. Получив в Оуэнсе в 1876 г. звание инженера, Т. поступил в Тринитиколледж Кембриджского университета. Здесь он изучал математику и ее приложения к задачам теоретической физики. Степень бакалавра по математике он получил в 1880 г. На следующий год он был избран членом ученого совета Тринитиколледжа и начал работать в Кавендишской лаборатории в Кембридже.

В 1884 г. Дж.У. Стретт, преемник Джейма Клерка Максвелла на посту профессора экспериментальной физики и директора Кавендишской лаборатории, ушел в отставку. Т. занял этот пост, несмотря даже на то, что ему было тогда всего двадцать семь лет и он не добился еще сколько-нибудь заметных успехов в экспериментальной физике. Однако его очень ценили как математико-физика, он активно применял максвелловскую теорию электромагнетизма, что и сочли достаточным при рекомендации его на этот пост.

Приступив к своим новым обязанностям в лаборатории, Т. решил, что главным направлением его исследований должно стать изучение электрической проводимости газов. Особенно его интересовали эффекты, возникающие при прохождении электрического разряда между электродами, помещенными в противоположных концах стеклянной трубки, из которой выкачан почти весь воздух. Ряд исследователей, и среди них английский физик Уильям Крукс, обратили внимание на одно любопытное явление, возникающее в таких газоразрядных трубках. Когда газ становится достаточно разреженным, стеклянные стенки трубки, расположенные на конце, противоположном катоду (отрицательному электроду), начинают флуоресцировать зеленоватым светом, что, по всей видимости, происходило под воздействием излучения, возникающего на катоде.

Катодные лучи вызвали в научной среде огромный интерес, а относительно их природы высказывались самые разноречивые мнения. Британские физики в большинстве своем полагали, что эти лучи представляют собой поток заряженных частиц. Напротив, немецкие ученые большей частью склонялись к мнению, что они являются возмущениями – быть может, колебаниями или токами – в некоей гипотетической невесомой среде, в которой, как они полагали, распространяется данное излучение. С этой точки зрения катодные лучи представлялись чем-то вроде высокочастотной электромагнитной волны, подобной ультрафиолетовому свету. Немцы ссылались на опыты Генриха Герца, который, как считалось, обнаружил, что катодные лучи, отклоняясь под воздействием магнитного поля, остаются нечувствительными к сильному электрическому полю. Предполагалось, что это опровергает мнение, будто катодные лучи – это поток заряженных частиц, ибо электрическое поле неизменно оказывает воздействие на траекторию таких частиц. Даже если это было и так, тем не менее экспериментальные доводы немецких ученых оставались не вполне убедительными.

Исследования катодных лучей и связанных с ними явлений оживились в связи с открытием Вильгельмом Рентгеном в 1895 г. рентгеновских лучей. Между прочим, эта форма излучения, о которой ранее не подозревали, также возникает в газоразрядных трубках (но не на катоде, а на аноде). Вскоре Т., работая вместе с Эрнестом Резерфордом, обнаружил, что облучение газов рентгеновскими лучами в огромной степени увеличивает их электропроводность. Рентгеновские лучи ионизировали газы, т.е. они превращали атомы газа в ионы, которые в отличие от атомов заряжены и, следовательно, служат хорошими переносчиками тока. Т. показал, что возникающая здесь проводимость в чем-то похожа на ионную проводимость при электролизе в растворе.

Выполнив со своими студентами весьма плодотворное исследование проводимости в газах, Т., ободренный успехами, вплотную занялся нерешенным вопросом, который занимал его уже много лет, а именно составом катодных лучей. Как и другие его английские коллеги, он был убежден в корпускулярной природе катодных лучей, полагая, что это могли быть быстрые ионы или другие наэлектризованные частицы, вылетающие из катода. Повторив опыты Герца, Т. показал, что на самом деле катодные лучи отклоняются электрическими полями. (Отрицательный результат у Герца был связан с тем, что в его газоразрядных трубках находилось слишком много остаточного газа.) Т. отмечал позднее, что «отклонение катодных лучей электрическими силами стало вполне различимым, а его направление указывало на то, что составляющие катодные лучи частицы несли отрицательный заряд. Этот результат устраняет противоречие между воздействием электрических и магнитных сил на катодные частицы. Но он имеет гораздо большее значение. Здесь возникает способ измерения скорости этих частиц v, а также и e/m, где m – масса частицы, а е – ее электрический заряд».

Метод, предложенный Т., был весьма прост. Сначала пучок катодных лучей отклонялся с помощью электрического поля, а затем с помощью магнитного поля он отклонялся на равную величину в противоположную сторону, так что в итоге пучок вновь выпрямлялся. Используя такую экспериментальную методику, стало возможным вывести простые уравнения, из которых, зная напряженности двух полей, легко определить как v, так и e/m.

Найденное таким образом значение e/m для катодных «корпускул» (как называет их Т.) оказалось в 1000 раз больше соответствующего значения для иона водорода (теперь мы знаем, что истинное отношение близко к 1800:1). Водород среди всех элементов обладает наибольшим отношением заряда к массе. Если, как полагал Т., корпускулы несли тот же самый заряд, что и ион водорода, («единичный» электрический заряд), то он открыл новую сущность, в 1000 раз более легкую, чем простейший атом.

Эта догадка подтвердилась, когда Т. с помощью прибора, изобретенного Ч.Т. Р. Вильсоном, удалось измерить значение е и показать, что оно действительно равно соответствующему значению для иона водорода. Он обнаружил далее, что отношение заряда к массе для корпускул из катодных лучей не зависит от того, какой газ находится в газоразрядной трубке и из какого материала сделаны электроды. Более того, частицы с тем же самым отношением e/m удавалось выделить из угля при нагревании и из металлов при воздействии на них ультрафиолетовыми лучами. Отсюда он сделал вывод, что «атом – не последний предел делимости материи; мы можем двигаться дальше – к корпускуле, и эта корпускулярная фаза одинакова, независимо от источника ее возникновения... Она, по всей видимости, входит составной частью во все разновидности материи при самых разных условиях, поэтому кажется вполне естественным рассматривать корпускулу как один из кирпичиков, из которых построен атом».

Т. пошел дальше и предложил модель атома, согласующуюся с его открытием. В начале XX в. он выдвинул гипотезу, что атом представляет собой размытую сферу, несущую положительный электрический заряд, в которой распределены отрицательно заряженные электроны (как в конце концов стали называть его корпускулы). Эта модель, хотя она и была вскоре вытеснена ядерной моделью атома, предложенной Резерфордом, обладала чертами, ценными для ученых того времени и стимулировавшими их поиски.

Т. получил в 1906 г. Нобелевскую премию по физике «в знак признания его выдающихся заслуг в области теоретических и экспериментальных исследований проводимости электричества в газах». На церемонии презентации лауреата Дж.П. Класон, член Шведской королевской академии наук, поздравил Т. с тем, что он «дал миру несколько главных трудов, позволяющих натурфилософу нашего времени предпринять новые исследования в новых направлениях». Показав, что атом не является самой последней неделимой частицей материи, как это долго считали, Т. и в самом деле открыл дверь в новую эру физической науки.

Между 1906 и 1914 гг. у Т. начался второй и последний большой период экспериментальной деятельности. Он изучал канальные лучи, которые движутся по направлению к катоду в разрядной трубке. Хотя Вильгельм Вин уже показал, что канальные лучи представляют собой поток положительно заряженных частиц, Т. с коллегами пролили свет на их характеристику, выделили различные типы атомов и атомных групп в этих лучах. В своих опытах Т. продемонстрировал совершенно новый способ разделения атомов, показав, что некоторые атомные

группы, такие, как СН, СН2 и СН3, могут существовать, хотя в обычных условиях их существование нестабильно. Большое значение имеет и то, что ему удалось обнаружить, что пробы инертного газа неона содержат атомы с двумя различными атомными весами. Открытие этих изотопов сыграло важную роль в понимании природы тяжелых радиоактивных элементов, таких, как радий и уран.

Во время первой мировой войны Т. работал в Управлении исследований и изобретений и был советником правительства. В 1918 г. он возглавил Тринитиколледж. Год спустя Резерфорд сменил его на посту профессора экспериментальной физики и директора Кавендишской лаборатории.

После 1919 г. деятельность Т. сводилась к выполнению обязанностей главы Тринити-колледжа, дополнительным исследованиям в Кавендишской лаборатории и выгодным вложениям денег. Ему нравилось работать в саду, и он часто совершал дальние прогулки в поисках необычных растений.

Томсон женился на Розе Паджет в 1890 г.; у них были сын и дочь. Его сын, Дж.П. Томсон, получил Нобелевскую премию по физике за 1937 г. Т. умер 30 августа 1940 г. и был похоронен в Вестминстерском аббатстве в Лондоне.

Т. оказал влияние на физику не только результатами своих блестящих экспериментальных исследований, но и как превосходный преподаватель и прекрасный руководитель Кавендишской лаборатории. Привлеченные этими его качествами, сотни наиболее талантливых молодых физиков со всего мира выбирали местом обучения Кембридж. Из тех, кто работал в Кавендише под руководством Т., семеро стали в свое время лауреатами Нобелевской премии.

В дополнение к Нобелевской премии Т. получил много других наград, среди которых можно указать медали: Королевскую (1894), Хьюза (1902) и Копли (1914), присужденные Лондонским королевским обществом. Он был президентом Лондонского королевского общества в 1915 г. и ему было пожаловано дворянство в 1908 г.

ТОМСОН (Thomson ) Джозеф Джон (1856-1940), английский физик, основатель научной школы, член (1884) и президент (1915-1920) Лондонского Королевского общества, иностранный член-корреспондент Петербургской АН (1913) и иностранный почетный член (1925) АН СССР. Директор Кавендишской лаборатории (1884-1919). Исследовал прохождение электрического тока через разреженные газы. Открыл (1897) электрон и определил (1898) его заряд. Предложил (1903) одну из первых моделей атома. Один из создателей электронной теории металлов. Нобелевская премия (1906).

ТОМСОН (Thomson ) Джозеф Джон (18 декабря 1856, Чэтем Хилл, пригород Манчестера - 30 августа 1940, Кембридж; похоронен в Вестминстерском аббатстве), английский физик, член Лондонского королевского общества с 1884 и его президент (1916-20 гг.), автор исследований электрических токов в разреженных газах и катодных лучей, объяснивший непрерывность спектра рентгеновских лучей, выдвинувший идею о существовании изотопов и получивший ее экспериментальное подтверждение, создатель одной из первых моделей атома, лауреат Нобелевской премии.

Математик приходит в физику

Родился в семье продавца книг. Отец хотел, чтобы он стал инженером, и когда Джозеф достиг четырнадцати лет, его отдали учиться в колледж Оуэна (впоследствии Манчестерский университет).

До середины 19 века в университетах не существовало исследовательских лабораторий и профессора, проводившие опыты, делали это у себя дома. Первая физическая лаборатория была открыта в Кембридже в 1874 г. Ее возглавил Джеймс Клерк Максвелл, а после его ранней кончины - лорд Рэлей, вышедший в отставку в 1884. И тогда неожиданно для многих Томсон, двадцативосьмилетний математик, только начинавший экспериментальные исследования, был избран кавендишевским профессором и директором лаборатории. Будущее показало, что этот выбор оказался весьма удачным.

Начало экспериментов

Внимание многих физиков в то время привлекали проблемы электричества и магнетизма. Уже появились (хотя еще не вошли во всеобщее употребление) уравнения Максвелла. Однако, Томсон обратился не к той части электродинамики, которая рассматривает напряженности полей, порождаемых "заданными" источниками (т. е. плотности зарядов и токов которых известны), а именно вопросом о физической природе самих этих источников. В теории самого Максвелла этот вопрос почти не обсуждался. Для него электрический ток - все, что порождает магнитное поле (не меняющиеся со временем распределения электрических зарядов создают только электрические поля). Томсона увлек вопрос о носителях зарядов. Он начал с исследования токов в разреженных газах, чем занимались тогда и в ряде других лабораторий. Томсон обнаружил, что проводимость газов увеличивается под воздействием рентгеновских лучей. Важные результаты были получены им при исследовании катодных лучей. т.е. потоков, исходящих из катодов (отрицательных электродов) разрядных трубок. Об их физической природе высказывались тогда различные мнения. Большинство немецких физиков полагало, что это - волны, подобные рентгеновским лучам, тогда как английские видели в них поток частиц. В 1894 Томсону удалось измерить их скорость, которая оказалась в 2000 раз меньше световой, что явилось убедительным доводом в пользу корпускулярной гипотезы. Через год французского экспериментатор Жан Перрен выяснил знак электрического заряда катодных лучей: попадая на металлический цилиндр, они заряжали его отрицательно. Оставалось определить массу частиц. Эту проблему также с блеском смог разрешить Томсон. Но, прежде чем начать эксперимент, он обратился к теории и рассчитал, как должна двигаться заряженная частица в скрещенных электрическом и магнитном полях. Отклонение такой частицы получалось зависящим от отношения ее заряда к массе. Начался эксперимент (нужно заметить, что Томсон чаще всего, тщательно, во всех деталях продумав эксперимент, предоставлял его проведение помощникам). Его результаты показали, что масса частиц почти в 2000 раз меньше. чем у самых легких ионов - ионов водорода. Что же касается заряда, то у ионов он уже был надежно вычислен на базе опытов по электролизу и оказался положительным. Поскольку атом водорода имеет нулевой заряд, это наводило на мысль, что существуют равные по величине и противоположные по знаку носители дискретных порций электрических зарядов. Те частицы, которые входили в состав катодных лучей, были вскоре названы электронами. Их открытие было одним из важнейших достижений физики конца 19 века, и оно непосредственно связано с именем Томсона, удостоенного за него в 1906 Нобелевской премии.

Модель атома

В том же 1897, когда было зарегистрировано открытие электрона, Томсон обратился к проблеме атома. Придя к убеждению, что, вопреки своему названию, атом не является неделимым, Томсон предложил модель его устройства. По этой модели атом выступал в виде положительно заряженной "капли", внутри которой "плавали" маленькие отрицательно заряженные шарики - электроны. Под действием кулоновских сил они располагались вблизи центра атома в виде цепочек определенных конфигураций (в которых можно было даже усмотреть нечто напоминающее упорядоченность в периодической таблице Менделеева). Если какой-то толчок отклонял электроны от положений равновесия, начинались колебания (связь со спектрами!) и кулоновские силы стремились восстановить исходное равновесие. Хотя опыты, проведенные впоследствии в той же кавендишевской лаборатории преемником Томсона, Э. заставили отказаться от этой модели, она сыграла немалую роль в формировании представлений о строении материи.

От электронов к ядрам

Начав работу в кавендишевской лаборатории с исследования рассеяния рентгеновских лучей, Томсон пришел к формуле, носящей его имя и описывающей рассеяние электромагнитных волн на свободных электронах. Эта формула и поныне играет видную роль в физике элементарных частиц. Важна была также роль Томсона в открытии фотоэффекта и термоэлектронной эмиссии. Очень плодотворной оказалась и идея использования скрещенных полей для измерения отношений зарядов частиц к их массам. На этой идее основана работа масс-спектрографов, которые нашли широкое применение в физике ядра и, в частности, сыграли существенную роль для открытия изотопов (ядер, имеющих различные массы, но одинаковые заряды, чем определяется их химическая неразличимость). Отметим, что предсказание существования изотопов и экспериментальное обнаружение некоторых из них также было сделано Томсоном.

Томсон был одним из ярчайших физиков-классиков. Правда, он застал появление квантовой теории (становление которой происходило в значительной степени на его глазах и при непосредственном участии его молодых коллег), появление теории относительности и атомной и ядерной физики. Более того, его личное участие в том грандиозном пересмотре всего физического миропонимания, которое принесли первые десятилетия нового века, было несомненным и глубоким. Но он до конца дней сохранял веру в существование механического эфира, несмотря на успехи релятивистской теории, которую он воспринимал лишь как отражение некоторых математических свойств уравнений Максвелла. По отношению к квантовой теории он довольно долго оставался в положении скептического наблюдателя и изменил мнение о ней лишь после того, как его сын Джордж Паджет Томсон на опыте обнаружил волновые свойства у электронов (за что был удостоен в 1937 Нобелевской премии). Томсону принадлежит колоссальная роль в формировании большой международной школы физиков. "Он не был блестящим лектором в прямом понимании этого слова, но его лекции впечатляли кристальной ясностью, с которой он давал объяснения, а также красотой и простотой лекционных демонстраций", - так писал о нем Макс Борн, который... сам был его учеником в 1907 и на своем примере почувствовал все обаяние его личности". В 1918 Томсон вышел в Кавендише в отставку, передав лабораторию Резерфорду, и возглавил Тринити-колледж (колледж Святой Троицы).


Джозеф Томсон
(1856-1940).

Английский физик Джозеф Томсон вошел в историю науки как человек, открывший электрон. Однажды он сказал: "Открытия обязаны остроте и силе наблюдательности, интуиции, непоколебимому энтузиазму до окончательного разрешения всех противоречий, сопутствующих пионерской работе".

Джозеф Джон Томсон родился 18 декабря 1856 года в Манчестере. Здесь, в Манчестере, он окончил Оуэнс-колледж, а в 1876-1880 годах учился в Кембриджском университете в знаменитом колледже святой Троицы (Тринити-колледж). В январе 1880 года Томсон успешно выдержал заключительные экзамены и начал работать в Кавендишской лаборатории.

Первая его статья, опубликованная в 1880 году, была посвящена электромагнитной теории света. В следующем году появились две работы, из которых одна положила начало электромагнитной теории массы. Статья называлась "Об электрических и магнитных эффектах, производимых движением наэлектризованных тел". В этой статье выражена та мысль, что "эфир вне заряженного тела является носителем всей массы, импульса и энергии". С увеличением скорости изменяется характер поля, в силу чего вся эта "полевая" масса возрастает, оставаясь все время пропорциональной энергии.

Томсон был одержим экспериментальной физикой в лучшем смысле этого слова. Неутомимый в работе, он настолько привык самостоятельно добиваться поставленной цели, что злые языки поговаривали о его полном пренебрежении к авторитетам. Уверяли, что он предпочитал самостоятельно продумывать любые незнакомые ему вопросы научного характера, вместо того чтобы обратиться к книгам и готовым теориям. Впрочем, это явное преувеличение…

Научные успехи Томсона были высоко оценены директором лаборатории Кавендиша Рэлеем. Уходя в 1884 году с поста директора, он, не колеблясь, рекомендовал своим преемником Томсона. Для самого Джозефа его назначение было неожиданностью.

Известно, что, когда один из американских физиков, стажировавшихся в Кавендишской лаборатории, узнал об этом назначении, он тут же собрал свои пожитки. "Бессмысленно работать под началом профессора, который всего на два года старше тебя…" - заявил он, отплывая на родину. Что ж, у него впереди было много времени, чтобы пожалеть о своей поспешности.

Для такого выбора у старого директора лаборатории были немалые основания. Все, кто близко знал Томсона, единодушно отмечали его неизменную благожелательность и приятную манеру общения, сочетавшуюся с принципиальностью. Позже ученики вспоминали, что их руководитель любил повторять слова Максвелла о том, что никогда не следует отговаривать человека поставить задуманный им эксперимент. Даже если он не найдет того, что ищет, он может открыть нечто иное и вынести для себя больше пользы, чем из тысячи дискуссий.

Так уживались в этом человеке столь разные свойства, как самостоятельность собственных суждений и глубокое уважение к мнению ученика, сотрудника или коллеги. И может быть, именно эти качества обеспечили ему успех в должности руководителя "Кавендиша".

На новый пост Томсон пришел, имея опубликованные работы, убеждение в единстве материального мира и множество планов на будущее. И его первые успехи способствовали авторитету Кавендишской лаборатории. Скоро здесь собралась группа молодых людей, приехавших из самых разных стран. Все они одинаково горели энтузиазмом и готовы были на любые жертвы ради науки. Образовалась школа, настоящий научный коллектив людей, объединенных общностью целей и методов, с мировым авторитетом во главе.

С 1884 по 1919 год, когда его сменил на посту директора лаборатории Резерфорд, Томсон руководил лабораторией Кавендиша. За это время она превратилась в крупный центр мировой физики, в международную школу физиков. Здесь начали свой научный путь Резерфорд, Бор, Ланжевен и многие другие, в том числе и русские ученые.

Завершая в конце жизни книгу своих воспоминаний, Томсон перечисляет среди своих бывших докторантов 27 членов Королевского общества, 80 профессоров, успешно работающих в тринадцати странах. Результат поистине блестящий.

Программа исследований Томсона была широкой: вопросы прохождения электрического тока через газы, электронная теория металлов, исследование природы различного рода лучей…

Взявшись за исследование катодных лучей, Томсон прежде всего решил проверить, достаточно ли тщательно были поставлены опыты его предшественниками, добившимися отклонения лучей электрическими полями. Он задумывает повторный эксперимент, конструирует для него специальную аппаратуру, следит сам за тщательностью исполнения заказа, и ожидаемый результат налицо. В трубке, сконструированной Томсоном, катодные лучи послушно притягивались к положительно заряженной пластинке и явно отталкивались от отрицательной, то есть вели себя так, как и полагалось потоку быстролетящих крошечных корпускул, заряженных отрицательным электричеством. Превосходный результат! Он мог, безусловно, положить конец всем спорам о природе катодных лучей, но Томсон не считал свое исследование законченным. Определив природу лучей качественно, он хотел дать точное количественное определение и составляющим их корпускулам.

Окрыленный первым успехом, он сконструировал новую трубку: катод, ускоряющие электроды в виде колечек и пластинки, на которые можно было подавать отклоняющее напряжение. На стенку, противоположную катоду, он нанес тонкий слой вещества, способного светиться под ударами налетающих частиц. Получился предок электронно-лучевых трубок, так хорошо знакомых нам в век телевизоров и радиолокаторов.

Цель опыта Томсона заключалась в том, чтобы отклонить пучок корпускул электрическим полем и компенсировать это отклонение полем магнитным. Выводы, к которым он пришел в результате эксперимента, были поразительны. Во-первых, оказалось, что частицы летят в трубке с огромными скоростями, близкими к световым. А во-вторых, электрический заряд, приходившийся на единицу массы корпускул, был фантастически большим. Что же это были за частицы: неизвестные атомы, несущие на себе огромные электрические заряды, или крохотные частицы с ничтожной массой, но зато и с меньшим зарядом?

Далее он обнаружил, что отношение удельного заряда к единице массы есть величина постоянная, не зависящая ни от скорости частиц, ни от материала катода, ни от природы газа, в котором происходит разряд. Такая независимость настораживала. Похоже, что корпускулы были какими-то универсальными частицами вещества, составными частями атомов…

При одной мысли об этом исследователю прошлого века должно было становиться не по себе. Ведь само слово "атом" означало "неделимый". Тысячелетиями, прошедшими со времени Демокрита, атомы являлись символами предела делимости, символами дискретности вещества. И вдруг… Вдруг оказывается, что и у них есть составные части?

Согласитесь, что тут было от чего почувствовать растерянность. Правда, к ужасу святотатства примешивался в немалой степени и восторг от предвкушения великого открытия…

Томсон принялся за расчеты. Прежде всего, следовало определить параметры таинственных корпускул, и тогда, может быть, удастся решить, что они собой представляют.

Тонкий почерк ученого покрывает листы бумаги бесконечными цифрами. И вот они, первые результаты расчетов: сомнений нет, неизвестные частицы - не что иное, как мельчайшие электрические заряды, неделимые атомы электричества, или электроны. Они были известны теоретически и даже получили название, но только ему удалось открыть и тем самым окончательно подтвердить их существование экспериментально.

И это сделал он - упрямый английский физик-экспериментатор профессор Джозеф Джон Томсон, которого ученики и коллеги за глаза звали просто Джи-Джи.

29 апреля 1897 года в помещении, где уже более двухсот лет происходили заседания Лондонского королевского общества, назначен его доклад. Большинство собравшихся хорошо знакомы с историей вопроса. Многие сами пытались решить проблемы природы катодных лучей. Имя докладчика обещало интересное сообщение.

И вот Томсон на трибуне. Он высокого роста, худощавый, в очках с металлической оправой. Говорит уверенно, громко. Ассистенты докладчика тут же, на глазах у присутствующих, готовят демонстрационный опыт. Действительно, все, о чем говорил высокий джентльмен в очках, имело место. Катодные лучи в трубке послушно отклонялись и притягивались магнитным и электрическим полями. Причем отклонялись и притягивались именно так, как должны были, если предположить, что они состояли из мельчайших отрицательно заряженных частиц…

Слушатели были в восторге. Они не раз прерывали доклад аплодисментами. Финал же превзошел все ожидания. Такого триумфа этот старинный зал, пожалуй, еще не видел. Почтенные члены Королевского общества вскакивали с мест, спешили к демонстрационному столу, толпились, размахивая руками, и кричали…

Восторг присутствующих объяснялся вовсе не тем, что коллега Дж. Дж. Томсон столь убедительно раскрыл истинную природу катодных лучей. Дело обстояло гораздо серьезнее. Атомы, наипервейшие кирпичики материи, перестали быть элементарными круглыми зернами, непроницаемыми и неделимыми частицами без всякого внутреннего строения… Если из них могли вылетать отрицательно заряженные корпускулы, значит, и представлять собой атомы должны были какую-то сложную систему, состоящую из чего-то заряженного положительным электричеством и из отрицательно заряженных корпускул - электронов.

Название "электрон", некогда предложенное Стонеем для обозначения величины наименьшего электрического заряда, стало именем неделимого "атома электричества".

Теперь стали видны и дальнейшие самые необходимые направления будущих поисков. Прежде всего, конечно, необходимо было определить точно заряд и массу одного электрона, что позволило бы уточнить массы атомов всех элементов, рассчитать массы молекул, дать рекомендации к правильному составлению реакций… Да что говорить, знание точного значения заряда электрона было необходимо как воздух, и потому за опыты по его определению тут же взялись многие физики.

В 1904 году Томсон обнародовал свою новую модель атома. Она представляла собой также равномерно заряженную положительным электричеством сферу, внутри которой вращались отрицательно заряженные корпускулы, число и расположение которых зависело от природы атома. Ученому не удалось решить общую задачу устойчивого расположения корпускул внутри сферы, и он остановился на частном случае, когда корпускулы лежат в одной плоскости, проходящей через центр сферы. В каждом кольце корпускулы совершали довольно сложные движения, которые автор гипотезы связывал со спектрами. А распределение корпускул по кольцам-оболочкам соответствовало вертикальным столбцам таблицы Менделеева.

Рассказывают, что однажды журналисты попросили Джи-Джи пояснить наглядно, каким он предполагает строение "своего атома".

О, это очень просто, - невозмутимо ответил профессор, - скорее всего, это нечто вроде пудинга с изюмом…

Так и вошел в историю науки атом Томсона - положительно заряженным "пудингом", нафаршированным отрицательными "изюминками" - электронами.

Томсон и сам прекрасно понимал сложность структуры "пудинга с изюмом". Ученый подошел совсем близко и к выводу, что характер распределения электронов в атоме определяет его место в периодической системе элементов, но только подошел. Окончательный вывод был еще впереди. Многое в предложенной им модели было еще необъяснимо. Никто, например, не понимал, что представляет собой положительно заряженная масса атома и сколько электронов должно содержаться в атомах различных элементов.

Томсон научил физиков управлять электронами, и в этом его основная заслуга. Развитие метода Томсона составляет основу электронной оптики, электронных ламп, современных ускорителей заряженных частиц. В 1906 году Томсону за его исследование прохождения электричества через газы была присуждена Нобелевская премия по физике.

Томсон разработал и методы изучения положительно заряженных частиц. Вышедшая в 1913 году его монография "Лучи положительного электричества" положила начало масс-спектроскопии. Развивая методику Томсона, его ученик Астон построил первый масс-спектрометр и разработал метод анализа и разделения изотопов. В лаборатории Томсона начались первые измерения элементарного заряда из наблюдения движения заряженного облака в электрическом поле. Этот метод был в дальнейшем усовершенствован Милликеном и привел к его ставшим классическими измерениям заряда электрона.

В лаборатории Кавендиша начала свою жизнь и знаменитая камера Вильсона, построенная учеником и сотрудником Томсона Вильсоном в 1911 году.

Таким образом, роль Томсона и его учеников в становлении и развитии атомной и ядерной физики очень велика. Но Томсон до конца своей жизни оставался сторонником эфира, разрабатывал модели движения в эфире, результатом которых, по его мнению, были наблюдаемые явления. Так, отклонение катодного пучка в магнитном поле он интерпретировал как прецессию гироскопа, наделяя совокупность электрического и магнитного полей вращательным моментом.

Умер Томсон 30 августа 1940 года, в трудное для Англии время, когда над ней нависла угроза вторжения гитлеровцев.