23.03.2024

Глюконеогенез из глутаминовой кислоты. Образование углеводов из белков и жиров


Глюконеогенез - синтез глюкозы из соединений неуглеводной природы.

В организме взрослого человека за сутки может синтезироваться до 250 г глюкозы. Глюконеогенез осуществляется главным образом в печени (синтезируетя до 90 % всей глюкозы), в корковом веществе почек и в энтероцитах (совсем незначительно).

Глюконеогенез стимулируется при длительном голодании, при ограничении поступления углеводов с пищей, в период восстановления после мышечной нагрузки, у новорождённых в первые часы после рождения.

Субстраты глюконеогенеза. Истинными субстратами глюконеогенеза являютя пируват, оксалоацетат, фосфодиоксиацетон, которые непосредственно включаются в этот процесс. Все вещества неуглеводной природы, дающие эти метаболиты, являются субстратами глюконеогенеза: лактат→ПВК, метаболиты цикла Кребса→ЩУК, глицерол→фосфодиоксиацетон, пропионил-КоА→метаболиты цикла Кребса→ЩУК, глюкогенные аминокислоты→ПВК или ЩУК. Главный источник субстратов глюконеогенеза - глюкогенные аминокислоты. К глюкогенным аминокислотам относятся все протеиногенные аминокислоты, кроме лейцина и лизина.

Стехиометрия:

2ПВК + 4АТФ + 2ГТФ + 2НАДН.Н+ + 2Н + 6Н2О Глюкоза + 4АДФ + 2ГДФ + 6Фн + 2НАД +

Глюконеогенез протекает, в основном, по тому же пути, что и гликолиз, но в обратном направлении. Для обхода трех ключевых реакций гликолиза используются четыре специфических фермента глюконеогенеза.
Ключевые ферменты и ключевые реакции глюконеогенеза:

1. Пируваткарбоксилаза
2. Фосфоенолпируваткарбоксикиназа
3. Фруктозо-1,6-бисфосфатаза (Фруктозо-1,6-бисфосфат + Н2О и Фруктозо-6-фосфат + ФН)
4. Глюкозо-6-фосфатаза (Глюкозо-6-фосфат + Н2О и Глюкоза + ФН)

Энергетический баланс. На синтез молекулы глюкозы из двух молекул пирувата расходуется 4АТФ и 2ГТФ (6АТФ). Энергию для глюконеогенеза поставляет процесс β-окис- ления жирных кислот.

Регуляция глюконеогенеза. Глюконеогенез стимулируется в условиях гипогликемии при низком уровне инсулина и преобладании его антагонистов (глюкагона, катехоламинов, глюкокортикоидов).

1. Регуляция активности ключевых ферментов:

фруктозо-1,6-бисфосфатаза по аллостерическому механизму активируется АТФ, ингибирутся Фр-1,6-ФФ и АМФ;

пируваткарбоксилаза активируется СН3СО~КоА (аллостерический активатор).

2. Регуляция количества ключевых ферментов: глюкокортикоиды и глюкагон

индуцируют синтез ключевых ферментов, а инсулин - репрессирует.

3. Регуляция количества субстрата: количество субстратов глюконеогенеза увеличивается под действием глюкокортикоидов (катаболическое действие на белки мышечной и лимфоидной ткани, на жировую ткань), а также глюкагона (катаболическое действие на жировую ткань).

Биологическая роль глюконеогенеза:

1. Поддержание уровня глюкозы в крови. При длительном голодании (голодание более суток) глюконеогенез является единственным процессом, поставляющим глюкозу в кровь.

2. Возвращение лактата в метаболический фонд углеводов. Лактат, образующийся в процессе анаэробного окисления глюкозы в эритроцитах и скелетных мышцах, транспортируется кровью в печень и превращается в гепатоцитах в глюкозу. Это так называемый межорганный цикл Кори.

Потребность в глюконеогенезе

  • для эритроцитов глюкоза является единственным источником энергии;
  • нервная ткань потребляет около 120 г глюкозы в сутки и эта величина практически не зависит от интенсивности ее работы. Только в экстремальных ситуациях (длительное голодание) она способна получать энергию из неуглеводных источников;
  • глюкоза играет весомую роль для поддержания необходимых концентраций метаболитов цикла трикарбоновых кислот (в первую очередь оксалоацетата).

Таким образом, при определенных ситуациях - при низком содержании углеводов в пище, голодании, длительной физической работе, то есть когда глюкоза крови расходуется и наступает гипогликемия, организм должен иметь возможность синтезировать глюкозу и нормализовать ее концентрацию в крови. Это достигается реакциями глюконеогенеза.

Необходимость глюконеогенеза в организме демонстрируют два цикла – глюкозо-лактатный и глюкозо-аланиновый.

Глюкозо-лактатный (выделен желтым) и глюкозо-аланиновый циклы


Глюкозо-лактатный цикл (цикл Кори)

Глюкозо-лактатный цикл - это циклический процесс, объединяющий реакции глюконеогенеза и реакции анаэробного гликолиза . Глюконеогенез происходит в печени, субстратом для синтеза глюкозы является лактат, поступающий в основном из эритроцитов или мышечной ткани.

В эритроцитах молочная кислота образуется непрерывно, так как для них анаэробный гликолиз является единственным способом образования энергии.

В скелетных мышцах высокое накопление молочной кислоты (лактата) является следствием гликолиза при очень интенсивной, субмаксимальной мощности, работе, при этом внутриклеточный рН снижается до 6,3-6,5. Но даже при работе низкой и средней интенсивности в скелетной мышце всегда образуется некоторое количество лактата. Убрать молочную кислоту можно только одним способом - превратить ее в пировиноградную кислоту. Однако сама мышечная клетка ни при работе, ни во время отдыха не способна превратить лактат в пируват из-за особенностей изофермента лактатдегидрогеназы-5 . Зато клеточная мембрана высоко проницаема для лактата и он движется по градиенту концентрации наружу. Поэтому во время и после нагрузки (при восстановлении) лактат легко удаляется из мышцы. Это происходит довольно быстро, всего через 0,5-1,5 часа в мышце лактата уже нет. Малая часть молочной кислоты выводится с мочой.

Большая часть лактата крови захватывается гепатоцитами, окисляется в пировиноградную кислоту и вступает на путь глюконеогенеза. Глюкоза, образованная в печени используется самим гепатоцитом или возвращается обратно в мышцы, восстанавливая во время отдыха запасы гликогена . Также она может распределиться по другим органам.

Глюкозо-аланиновый цикл

Целью глюкозо-аланинового цикла также является уборка пирувата, но, кроме этого решается еще одна немаловажная задача - уборка лишнего азота из мышцы.

При мышечной работе и в покое в миоците распадаются белки и образуемые аминокислоты трансаминируются с α-кетоглутаратом. Полученный глутамат взаимодействует с пируватом. Образующийся аланин является транспортной формой азота и пирувата из мышцы в печень. В гепатоците идет обратная реакция трансаминирования, аминогруппа передается на синтез мочевины, пируват используется для синтеза глюкозы.

Глюконеогенез энергетически затратен

Все аминокислоты, кроме кетогенных лейцина и лизина, способны участвовать в синтезе глюкозы. Углеродные атомы некоторых из них - глюкогенных - полностью включаются в молекулу глюкозы, некоторых - смешанных - частично. Кроме получения глюкозы, глюконеогенез обеспечивает и уборку «шлаков» - лактата, постоянно образуемого в эритроцитах или при мышечной работе, и глицерола, являющегося продуктом липолиза в жировой ткани.

Обходные пути

Как известно, в гликолизе существуют три необратимые реакции: пируваткиназная (десятая), фосфофруктокиназная (третья) и гексокиназная (первая). В этих реакциях происходит высвобождение энергии для синтеза АТФ. Поэтому в обратном процессе возникают энергетические барьеры, которые клетка обходит с помощью дополнительных реакций.

Глюконеогенез включает все обратимые реакции гликолиза, и особые обходные пути, то есть он не полностью повторяет реакции окисления глюкозы. Его реакции способны идти во всех тканях, кроме последней глюкозо-6-фосфатазной реакции, которая идет только в печени и почках. Поэтому, строго говоря, глюконеогенез идет только в этих двух органах.

Обход десятой реакции гликолиза

На этом этапе глюконеогенеза работают два ключевых фермента - в митохондриях пируваткарбоксилаза и в цитозоле фосфоенолпируват-карбоксикиназа.

В химическом плане обходной путь десятой реакции выглядит достаточно просто:

Упрощенный вариант обхода десятой реакции гликолиза


Однако дело в том, что пируваткарбоксилаза находится в митохондрии, а фосфоенолпируват-карбоксикиназа - в цитозоле. Дополняет проблему непроницаемость митохондриальной мембраны для оксалоацетата. Зато через мембрану может пройти малат, предшественник оксалоацетата по ЦТК.

Поэтому в реальности все выглядит более сложно:

Обход десятой реакции гликолиза


  1. В цитозоле пировиноградная кислота может появиться при окислении молочной кислоты и в реакции трансаминирования аланина. После этого пируват с импортом с ионами Н+, движущимися по протонному градиенту, проникает в митохондрии. В митохондриях пируваткарбоксилаза превращает пировиноградную кислоту в оксалоацетат. Эта реакция идет в клетке постоянно, являясь анаплеротической (пополняющей) реакцией ЦТК.
  2. Далее оксалоацетат мог бы превратиться в фосфоенолпируват, но для этого сначала он должен попасть в цитозоль. Поэтому происходит реакция восстановления оксалоацетата в малат при участии малатдегидрогеназы. В результате малат накапливается, выходит в цитозоль и здесь превращается обратно в оксалоацетат. Повернуть малатдегидрогеназную реакцию ЦТК вспять позволяет избыток НАДН в митохондриях. НАДН поступает из β-окисления жирных кислот, активируемого в условиях недостаточности глюкозы в гепатоците.
  3. В цитоплазме фосфоенолпируват-карбоксикиназа осуществляет превращение оксалоацетата в фосфоенолпируват, для реакции требуется энергия ГТФ. От молекулы отщепляется тот же углерод, что и присоединяется.

Глюконеогенез - это процесс синтеза глюкозы из веществ неуглеводной природы. У млекопитающих эту функцию выполняет в основном печень , в меньшей мере - почки и клетки слизистой кишечника . Главными суб­стратами глюконеогенеза являютсяпируват, лактат, глицерин, аминокислоты (рис.10).

Рисунок 10

Глюконеогенез обеспечивает потребности орга­низма в глюкозе в тех случаях, когда диета содержит недостаточное количество углеводов (физическая нагрузка, голодание). Постоянное поступление глюкозы особенно необходимо для нервной системы и эри­троцитов. При понижении концентрации глюкозы в крови ниже определенного критического уровня нарушается функционирование мозга; при тяжелой гипогликемии возникает коматозное состояние и мо­жет наступить летальный исход.

Запасов гликогена в организме достаточно для удовлетворения потребностей в глюкозе в период между приемами пищи. При углеводном или полном голодании, а также в условиях длительной физической работы концентрация глюкозы в крови поддерживается за счет глюконеогенеза. В этот процесс могут быть вовлечены вещества, которые способны превратиться в пируват или любой другой метаболит глюконеогенеза. На рисунке показаны пункты включения первичных субстратов в глюконеогенез:

Глюкоза необходи­ма для жировой ткани как источник глицерола, входящего в состав глицеридов; она играет существенную роль в поддержании эффек­тивных концентраций метаболитов цикла лимон­ной кислоты во многих тканях. Даже в условиях, когда большая часть потребностей организма в калориях обеспечивается за счет жира, всегда сохраняется определенная потребность в глю­козе. Кроме того, глюкоза служит единственным ви­дом топлива для работы скелетной мышцы в анаэробных условиях. Она является предшествен­ником молочного сахара (лактозы) в молочных же­лезах и активно потребляется плодом в период раз­вития. Механизм глю­конеогенеза используется для удаления из крови продуктов тканевого метаболизма, например лактата, образующегося в мышцах и эритроцитах, глицерола, непрерывно образующегося в жировой ткани

Включение различных субстратов в глюконео­генез зависит от физиологического состояния орга­низма. Лактат является продуктом анаэробного гликоли­за в эритроцитах и работающих мышцах. Глицерин высвобождается при гидролизе жиров в жировой ткани в постабсорбтивный период или при физической нагрузке. Аминокислоты образуются в результате распада мышечных белков.

Семь реакций гликолиза легко обратимы и используются в глюконеогенезе. Но три киназные реакции необратимы и должны шунтироваться (рис. 12). Так, фруктозо-1,6-дифосфат и глюкозо-6-фосфат дефосфорилируются специфическими фосфатазами, а пируват фосфорилируется до образования фосфоенолпирувата посредством двух промежуточных стадий через оксалоацетат. Образование оксалоацетата катализируется пируваткарбоксилазой. Этот фермент содержит в качестве кофермента биотин. Оксалоацетат образуется в митохондриях, транспортируется в цитозоль и включается в глюконеогенез. Следует обратить внимание на то, что каждая из необратимых реакций гликолиза вместе с соответствующей ей необратимой реакцией глюконеогенеза составляют цикл, называемый субстратным:

Рисунок 12

Таких циклов существует три - соответственно трем необратимым реакциям. Эти циклы служат точками приложения регуляторных механизмов , в результате чего изменяется поток метаболитов либо по пути распада глюкозы, либо по пути ее синтеза.

Направление реакцийпервого субстратного цик­ла регулируется главным образом концентрацией глюкозы. При пищеварении концентрация глюко­зы в крови повышается. Актив­ность глюкокиназы в этих условиях максимальна. Вследствие этого ускоряется гликолитическая реак­цияглюкоза ® глюкозо-6-фосфат. Кроме того, инсу­лин индуцирует синтез глюкокиназы и ускоряет тем самым фосфорилирование глюкозы. Поскольку глюкокиназа печени не ингибируется глюкозо-6-фосфатом (в отличие от гексокиназы мышц), то основная часть глюкозо-6-фосфата направляется по гликолитическому пути.

Превращение глюкозо-6-фосфата в глюкозу катализируется другой специфической фосфатазой-глюкозо-6-фосфатазой. Она присутствует в пе­чени и почках, но отсутствует в мышцах и жировой ткани. Наличие этого фермента позволяет ткани по­ставлять глюкозу в кровь.

Распад гликогена с образованием глюкозо-1-фосфата осуществляется фосфорилазой. Синтез гликогена идет по совершенно другому пути, через образование уридиндифосфатглюкозы, и катализи­руетсягликогенсинтазой .

Второй субстратный цик­л: превращение фруктозо-1,6-бисфосфата во фруктозо-6-фосфат, катализи­руется специфическим ферментомфруктозо-1,6-бисфосфатазой. Этот фермент имеется в печени и почках, он был также обнаружен в поперечнополосатых мышцах.

Направление реакцийвторого субстратного цик­ла зависит от активности фосфофруктокиназы и фосфатазы фруктозо-1,6-бисфосфата. Активность этих ферментов зависит от концентрации фруктозо-2,6-бисфосфата.

Фруктозо-2,6-бисфосфат образуется путем фосфорилирования фруктозо-6-фосфата при участии би­функционального фермента (БИФ), который ка­тализирует также и обратную реакцию.

Киназная активность проявляется, когда бифунк­циональный фермент находится в дефосфорилированной форме (БИФ-ОН). Дефосфорилированная форма БИФ характерна для абсорбтивного периода, когда инсулин-глюкагоновый индекс высокий.

При низком инсулин-глюкагоновом индексе, ха­рактерном для периода длительного голодания, происходят фосфорилирование БИФ и проявление его фосфатазной активности, результатом чего яв­ляются снижение количества фруктозо-2,6-бисфосфата, замедление гликолиза и переключение на глюконеогенез.

Киназная и фосфатазная реакции катализируют­ся разными активными центрами БИФ, но в каждом из двух состояний фермента - фосфорилиро-ванном и дефосфорилированном - один из актив­ных центров ингибирован.

Глюконеогенез – это синтез глюкозы из неуглеводных компонентов: лактата , пирувата , глицерола , кетокислот цикла Кребса и других кетокислот, из аминокислот . Все аминокислоты, кроме кетогенных лейцина и лизина, способны участвовать в синтезе глюкозы. Углеродные атомы некоторых из них – глюкогенных – полностью включаются в молекулу глюкозы, некоторых – смешанных – частично.

Кроме получения глюкозы, глюконеогенез обеспечивает и уборку "шлаков" – лактата , постоянно образуемого в эритроцитах или при мышечной работе, и глицерола , являющегося продуктом липолиза в жировой ткани.

Как известно, в гликолизе существуют три необратимые реакции: пируваткиназная (десятая), фосфофруктокиназная (третья) и гексокиназная (первая). В этих реакциях происходит высвобождение энергии для синтеза АТФ. Поэтому в обратном процессе возникают энергетические барьеры , которые клетка обходит с помощью дополнительных реакций.

Глюконеогенез включает все обратимые реакции гликолиза, и особые обходные пути , т.е. он не полностью повторяет реакции окисления глюкозы. Его реакции способны идти во всех тканях, кроме последней глюкозо-6-фосфатазной реакции, которая идет только в печени и почках . Поэтому, строго говоря, глюконеогенез идет только в этих двух органах.

На этом этапе глюконеогенеза работают два ключевых фермента – в митохондриях пируваткарбоксилаза и в цитозоле .

В химическом плане обходной путь десятой реакции выглядит достаточно просто:

Упрощенный вариант обхода десятой реакции гликолиза

Однако дело в том, что пируваткарбоксилаза находится в митохондрии, а фосфоенолпируват-карбоксикиназа – в цитозоле. Дополняет проблему непроницаемость митохондриальной мембраны для оксалоацетата . Зато через мембрану может пройти малат , предшественник оксалоацетата по ЦТК.

Поэтому в реальности все выглядит более сложно:

1. В цитозоле пировиноградная кислота может появиться при окислении молочной кислоты и в реакции трансаминирования аланина . После этого пируват симпортом с ионами Н + , движущимися по протонному градиенту, проникает в митохондрии. В митохондриях пируваткарбоксилаза превращает пировиноградную кислоту в оксалоацетат .

Пируваткарбоксилазная реакция идет в клетке постоянно, так как оксалоацетат является главным регулятором скорости ЦТК. Реакция называется анаплеротической (пополняющей) реакцией ЦТК.

2. Далее оксалоацетат мог бы превратиться в фосфоенолпируват, но для этого сначала он должен попасть в цитозоль. Поэтому происходит реакция восстановления оксалоацетата в малат при участии малатдегидрогеназы . В результате малат накапливается, выходит в цитозоль и здесь превращается обратно в оксалоацетат.

Повернуть малатдегидрогеназную реакцию ЦТК вспять позволяет избыток НАДН в митохондриях. НАДН поступает из β-окисления жирных кислот, активируемого в условиях недостаточности глюкозы в гепатоците.

3. В цитоплазме фосфоенолпируват-карбоксикиназа осуществляет превращение оксалоацетата в фосфоенолпируват , для реакции требуется энергия ГТФ. От молекулы отщепляется тот же углерод, что и присоединяется.

Обход десятой реакции гликолиза

Обход третьей реакции гликолиза

Второе препятствие на пути синтеза глюкозы – фосфофруктокиназная реакция – преодолевается с помощью фермента фруктозо-1,6-дифосфатазы . Этот фермент есть в почках, печени, поперечно-полосатых мышцах. Таким образом, эти ткани способны синтезировать фруктозо-6-фосфат и глюкозо-6-фосфат.

Глюконеогенез – это синтез глюкозы из неуглеводных компонентов: лактата , пирувата , глицерола , кетокислот цикла Кребса и других кетокислот, из аминокислот . Все аминокислоты, кроме кетогенных лейцина и лизина, способны участвовать в синтезе глюкозы. Углеродные атомы некоторых из них – глюкогенных – полностью включаются в молекулу глюкозы, некоторых – смешанных – частично.

Кроме получения глюкозы, глюконеогенез обеспечивает и уборку "шлаков" – лактата , постоянно образуемого в эритроцитах или при мышечной работе, и глицерола , являющегося продуктом липолиза в жировой ткани.

Как известно, в гликолизе существуют три необратимые реакции: пируваткиназная (десятая), фосфофруктокиназная (третья) и гексокиназная (первая). В этих реакциях происходит высвобождение энергии для синтеза АТФ. Поэтому в обратном процессе возникают энергетические барьеры , которые клетка обходит с помощью дополнительных реакций.

Глюконеогенез включает все обратимые реакции гликолиза, и особые обходные пути , т.е. он не полностью повторяет реакции окисления глюкозы. Его реакции способны идти во всех тканях, кроме последней глюкозо-6-фосфатазной реакции, которая идет только в печени и почках . Поэтому, строго говоря, глюконеогенез идет только в этих двух органах.

На этом этапе глюконеогенеза работают два ключевых фермента – в митохондриях пируваткарбоксилаза и в цитозоле .

В химическом плане обходной путь десятой реакции выглядит достаточно просто:

Упрощенный вариант обхода десятой реакции гликолиза

Однако дело в том, что пируваткарбоксилаза находится в митохондрии, а фосфоенолпируват-карбоксикиназа – в цитозоле. Дополняет проблему непроницаемость митохондриальной мембраны для оксалоацетата . Зато через мембрану может пройти малат , предшественник оксалоацетата по ЦТК.

Поэтому в реальности все выглядит более сложно:

1. В цитозоле пировиноградная кислота может появиться при окислении молочной кислоты и в реакции трансаминирования аланина . После этого пируват симпортом с ионами Н + , движущимися по протонному градиенту, проникает в митохондрии. В митохондриях пируваткарбоксилаза превращает пировиноградную кислоту в оксалоацетат .

Пируваткарбоксилазная реакция идет в клетке постоянно, так как оксалоацетат является главным регулятором скорости ЦТК. Реакция называется анаплеротической (пополняющей) реакцией ЦТК.

2. Далее оксалоацетат мог бы превратиться в фосфоенолпируват, но для этого сначала он должен попасть в цитозоль. Поэтому происходит реакция восстановления оксалоацетата в малат при участии малатдегидрогеназы . В результате малат накапливается, выходит в цитозоль и здесь превращается обратно в оксалоацетат.

Повернуть малатдегидрогеназную реакцию ЦТК вспять позволяет избыток НАДН в митохондриях. НАДН поступает из β-окисления жирных кислот, активируемого в условиях недостаточности глюкозы в гепатоците.

3. В цитоплазме фосфоенолпируват-карбоксикиназа осуществляет превращение оксалоацетата в фосфоенолпируват , для реакции требуется энергия ГТФ. От молекулы отщепляется тот же углерод, что и присоединяется.

Обход десятой реакции гликолиза

Обход третьей реакции гликолиза

Второе препятствие на пути синтеза глюкозы – фосфофруктокиназная реакция – преодолевается с помощью фермента фруктозо-1,6-дифосфатазы . Этот фермент есть в почках, печени, поперечно-полосатых мышцах. Таким образом, эти ткани способны синтезировать фруктозо-6-фосфат и глюкозо-6-фосфат.